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Abstract—The Belief-Desire-Intention (BDI) paradigm is a flex-
ible framework for representing intelligent agents. Practical BDI
agent systems rely on a static plan library to reduce the planning
problem to the simpler problem of plan selection. However, fixed
pre-defined plan libraries are unable to adapt to fast-changing
environments pervaded by uncertainty. In this paper, we advance
the state-of-the-art in BDI agent systems by proposing a plan
library evolution architecture with mechanisms to incorporate
new plans (plan expansion) and drop old/unsuitable plans (plan
contraction) to adapt to changes in a realistic environment. The
proposal follows a principled approach to define plan library
expansion and contraction operators, motivated by postulates
that clearly highlight the underlying assumptions, and quantified
by decision-support measures of temporal information. In partic-
ular, we demonstrate the feasibility of the proposed contraction
operator by presenting a multi-criteria argumentation based
decision making to remove plans exemplified in a planetary
vehicle scenario.

Index Terms—BDI Agent Systems, Agent Reasoning, Plan
Library Expansion/Contraction, Multi-criteria Decision Making

I. INTRODUCTION

The Belief, Desire, and Intentions (BDI) architecture [1] is a

popular and well-studied framework for developing intelligent

agents. Most of the languages based on BDI – such as

AgentSpeak [2], CAN [3], CANPLAN [4] – rely on a pre-

defined plan library to react to events. Each plan in the

plan library prescribes under which conditions the plan is

valid, and which steps should be taken to respond to the

event. This (computationally) efficient design has been proven

very successful in areas such as business [5], healthcare [6],

industry [7].

However, intelligent agents should also be able to adapt to

a changing environment. The aforementioned approaches are

not able to do so, given that their plan libraries are fixed and

pre-defined. Nevertheless, real-world environments do often

change over time. Furthermore, realistic environments can

be non-deterministic, making it particularly difficult for an

agent designer to foresee all eventualities, and hence to create

plans in advance to deal with all obscure situations. When an

intelligent agent ends up in a situation where its pre-defined

response is inadequate or incorrect because the environment

changed, or in a situation that was not foreseen at design time,

it should be able to augment the range of behaviours (i.e. the

BDI plans) in order to cope with changes in the environment.

To illustrate the problem, consider the example of a Mars

Rover exploring the surface of Mars. The Rover, which is pre-

designed with tasks (e.g. carrying out science experiments),

must utilise a high degree of autonomy due to the high-latency

communication channels to Earth. For example, when an off-

nominal event (e.g. a blue rock) is detected, it would increase

science exploration if the Rover can respond to such “science

opportunities”. This autonomous behaviour implies that new

plans (e.g. navigation plan) may need to be generated. Fur-

thermore, since the Rover will always return to the lander to

deliver samples to the ascent vehicle, this lends an opportunity

to the Rover to (potentially) use knowledge obtained during

navigation to a sampling site on its return. If the Rover has

safely navigated to a location, “remembering” the route it took

(i.e. adding such a navigation plan to its plan library) and then

returning by the same path are promising features highlighted

in [8]. However, some of these “remembered’’ plans may fail

because of the changing Martian surface. Therefore, future

planetary Rovers demand more adaptive agent systems which

can both add and delete plans intelligently.

Over the years, many enhancements have been proposed to

provide existing BDI agent systems with powerful autonomous

planning capabilities. An overview of these is given in the

survey by Meneguzzi and De Silva [9]. However, most of

these planning extensions overlooked the potential adoption

of new plans, and continue to treat the plan library as a

fixed and pre-defined set. For example, to compensate for

the inadequacy of a plan library in an uncertain environment,

the authors of [10] proposed the AgentSpeak+ framework,

which extends AgentSpeak with a mechanism for probabilistic

planning named Partially Observable Markov Decision Pro-

cesses (POMDPs) [11]. However, once the goal was met, the

(potentially valuable) plan obtained from the POMDP was

simply forgotten. Other promising works, such as [12], [13],

[14], proposed the integration of classical planners and BDI

agents to generate new plans. Unfortunately, none of them

considers expanding the set of pre-defined plans by adopting

these new plans. To the best of our knowledge, the only work

considering the reuse of new plans (achieved by adding them

to the plan library) is found in [15]. Still, this work solely

focuses on leveraging the new plans in a classical setting and

approaches the plan library expansion in an ad-hoc manner.

In this paper, we investigate the structure of a pre-defined

plan library and define a generic framework that allows a BDI

414

2018 IEEE 30th International Conference on Tools with Artificial Intelligence

2375-0197/18/$31.00 ©2018 IEEE
DOI 10.1109/ICTAI2018.2018.00044



agent to incorporate new plans from automated planning tools

for unforeseen situations. We will refer to this step as plan

library expansion. However, merely adding plans is not enough

for an agent. As the agent ages, some plans may become

unsuitable, hampering its reactive nature which is crucial to the

success of BDI agents. For instance, an approach to an event

(e.g. the need to enter another room) which worked in the past

(e.g. turning a handle) may no longer work in the future (e.g.

the handle has been removed, and a button needs to be pressed

instead). Therefore, there is a need for plan contraction as

well. Plan library contraction is an altogether more significant

– albeit challenging – problem than expansion because it relies

on both qualitative and quantitative measures associated with

each plan in the library to determine which plans are no longer

deemed valuable and so can be removed. For example, a plan

may be flagged for deletion because it became obsolete (e.g.

a low number of calls) or because it became incorrect (e.g. a

high failure rate). However, due to the nature of a plan library,

care must be taken when deleting plans to avoid undesirable

side-effects (e.g. deleting a (sub)plan relied upon by another

highly successful plan).

To achieve these objectives, we follow a principled approach

to a plan library expansion and contraction, motivated by

postulates that clearly highlight the underlying assumptions,

and supported by measures which are able to characterise plans

in the library. The contributions of this paper are therefore

threefold. Firstly, we provide a systematic specification of

domain independent characteristics (e.g. the quality of plans)

of the plan library as the basis for plan library expansion

and contraction reasoning. Secondly, we define a plan library

expansion operator and formally shows the benefits of expan-

sion regarding relevant characteristics. Thirdly, we introduce

an operator for plan library contraction which takes the earlier

characteristics into account, and which balances the need for

reactivity, the fragility of the plan library, and the correctness

and overall performance of the agent.

The remainder of the paper is organised as follows. Prelimi-

naries on BDI are given using CAN language in Section II. The

plan library analysis is given in Section III. A novel BDI evo-

lution architecture is presented in Section IV and Section V.

Section VI discusses related work and concluded.

II. PRELIMINARIES

An agent in the BDI framework is defined by its beliefs,

desires, and intentions. The beliefs encode the understanding

of the environment, the desires are those goals that an agent

would like to accomplish, and the intentions those desires that

the agent has committed to achieving.

CAN formalises the behaviour of a classical BDI agent,

which is defined by a belief base B and a plan library Π. The

belief base B is a set of formulas encoding the current beliefs

(i.e. what the agent believes to be true)1. The plan library Π
encodes a collection of plans of the form e : ϕ ← P with

1The belief base of a BDI agent is a classical belief base rather than e.g. a
probabilistic belief base. Nonetheless, our ideas can extend to the latter (e.g.
applying [16]).

e the event-goal, ϕ the pre-condition, and P the plan-body

program. The plan e : ϕ ← P encodes a strategy (i.e. plan

body P ) of reacting to the event-goal e if ϕ is believed to be

true. When no ambiguity arises, we use the plan-body P to

refer the whole plan rule, eP the event-goal of the plan P ,

and ϕP the pre-condition of the plan P . The language used

in the plan-body program P has the following

nil | act | !e | e : (|ψ1 : P1, · · · , ψn : Pn|)
where nil is an empty program, act a primitive action, !e a

subgoal to achieve the event e, which is simply an event-goal

combined with the syntactic label “!”. We sometimes blur the

distinction between event-goals e and subgoals !e. A set of

relevant plans for an event-goal e is encoded by eP = {ψ1 :
P1, · · · , ψn : Pn}. It means that, given an event-goal e, the

agent will select the plan-body program Pi to resolve e when

ψi is believed true (1 ≤ i ≤ n). When there are multiple plan-

body programs Pi satisfied to achieve event-goal e, the agent

will select one of them to pursue and only drop it when it either

succeeds or fails. For simplicity, we consider a BDI agent

system that is programmed relative to some finite propositional

language. We also use standard mathematical symbols N to

refer to the set of natural numbers and R≥0 the set of non-

negative real numbers throughout this work.

III. PLAN LIBRARY ANALYSIS

In this section, we establish some measures to capture the

characteristics of plans (e.g. the performance of plans, and

the relationships between them) in a BDI agent system. This

section will provide the foundations for understanding both

how to compute them, and how they can be used for the

library expansion in Section IV and contraction reasoning

in Section V.

A. Measuring Performance of Plans

In this work, we use P to stand for a set of plans and T a

set of time points. We start by introducing notation for plan

execution as follows:

Definition 1. . A function S : P × T → {�,⊥,∅} is called
a status function.

A status function records the success and failure of plans

during agent execution while the agent is running. For exam-

ple, S(P1, 3) = � means that plan P1 succeeded at time point

3 while S(P2, 5) = ⊥ says P2 failed at time point 5. Finally,

S(P, t) = ∅ if it didn’t succeed or fail at time point t (e.g.

still in execution).

We now introduce the execution frequency of plans to

measure how many times a plan has been completely executed.

Definition 2. An execution frequency function Δ : P×T ×T
→ N is defined for each P ∈ P and each t1, tn ∈ T such
that t1 ≤ tn as follows:

Δ(P, t1, tn) = |{S(P, ti) �= ∅ · i = 1, · · · , n}|
The execution frequency quantifies the number of times a

plan has led to either success of failure over a given set of
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time points between t1 and tn. The success rate defined below,

which is based on the execution frequency, captures the relative

performance quality of each individual plan.

Definition 3. A success rate for plan P is defined as:

Φ(P, t1, tn) =
Δs(P, t1, tn)

Δ(P, t1, tn)

where Δs(P, t1, tn) = |{S(P, ti) = �· i = 1, · · · , n}| stands
for the successful execution frequency.

We stress that argument T × T allows the agent to have a

capture of the quality of plans which can be based on both

overall performance (i.e. Δ(P, t0, tn)) and latest performance

(e.g. Δ(P, tn−2, tn)). Such timely capacity is vital as the

realistic environment is highly dynamic. Simply having the

overall success rate may prevent the agent from being aware

of the recent abruptly growing failure of some plans.

B. Relationships Between Plans

We have introduced execution frequency and success rate
to provide a performance abstraction of plans in BDI agents.

However, it says nothing about the inherent structural charac-

teristics (i.e. the relationships between plans) of these plans.

Recall that eP is a set of relevant plans {P1, · · · ,Pn} for

achieving an event-goal e. The first thing we are interested in

is to know, and to compute the relevancy of individual plan P ,

i.e. how many alternative relevant plans a BDI agent possesses

to responds to an event-goal e in different situations.

Definition 4. A relevancy function Υ : P → N is defined as:

ΥP(P ) = |eP | − 1

where P ∈ eP ⊆ P .

Besides the concept of relevancy, we are also interested

in replaceability, which is when there are two or more plans

applicable in the same situation to get the same result (i.e.

post-effects). Intuitively, the “greater” the replaceability of a

plan P is, the higher the chance that such a plan P can be

recovered in the event of its failure, thus providing flexibility

and robustness to the whole system.

We introduce the concept of what it means by being

replaced and the degree of replaceability based on the

work of [17] on overlapping and [18] on summary infor-

mation. The overlap of P and {P1, · · · , Pn}, denoted as

O({P, P1, · · · , Pn}) in [17], measures the number of situ-

ations (i.e. possible worlds) that both P and {P1, · · · , Pn}
can be applicable. It tells whether two or more plans can

be applicable in the some same situations. For example,

O({P, P1, · · · , Pn}) �= 0 shows that the situation for both

P and a set of plans {P, P1, · · · , Pn} to be applicable exists.

On the other hand, the summarised post-effects of a plan P
(i.e. post(P ) denoted in [18]) provides a means to check if

some plans can achieve the same result w.r.t. necessary and

possible post-effects. The summarised necessary post-effects

are those which are always true after successfully executing

any decomposition of plans while possible post-effects are

those that may result from some decomposition of plans. We

use post({P1, · · · , Pn}) |= post(P ) to represent that the post-

effects of executions of S = {P1, P2, · · · , Pn} can ensure the

post-effects of executions of P to be true. Therefore, we have

Definition 5. A plan P can be replaced by a set of plans
S = {P1, P2, · · · , Pn}, denoted as P �r S, if the over-
lap of P and {P1, · · · , Pn}, O({P, P1, · · · , Pn}) �= 0 and
post({P1, · · · , Pn}) |= post(P ). We also say that S can
minimally replace P , denoted as P �mr S, iff P �r S and
∀P ′ ∈ S, P �r (S \ P ′).

Finally, we define the degree of replaceability for P to be

the number of sets of plans S that can minimally replace P .

Definition 6. A degree of replaceability for plan P is a
function ΓP : P → N, defined as ΓP(P ) = |{S · P �mr S}|.

We close the section by noting that what we have done

so far is to define the relevant measures of BDI plans at the

individual plan level. The extended measures for a given set of

plans (e.g. a plan library) are the subject of following section.

C. Summary Information

We can now summarise both performance and structural

information of an individual plan to characterise the plan

library of a BDI agent system as a whole.

Firstly, we describe how the performance information (e.g.

execution frequency) of each plan can be summarised to

indicate the performance of a plan library. We apply a mean

aggregation method to provide an average performance of a

plan library.

Definition 7. An execution frequence is a function Δ : 2P ×
T × T → R≥0 defined as follows:

Δ(Π, t1, tn) =

∑
P∈Π Δ(P, t1, tn)

|Π| .

where Π ⊆ 2P and Δ(P, t1, tn) refers to the execution
frequency of plan P between time points t1 and tn.

Definition 8. A success rate is a function Δ : 2P ×T ×T →
R≥0 defined as follows:

Φ(Π, t1, tn) =

∑
P∈Π Δs(P, t1, tn)

|{P ∈ Π ·Δ(P, t1, tn) �= 0}|
where Π ⊆ 2P , Φ(P, t1, tn) refers to success rate of plan P
between time points t1 and tn, and Δ(P, t1, tn) �= 0 means P
has to be executed at least once between time t1 and tn.

Secondly, we summarise the structural information of a

plan library by counting how many event-goals a plan library

accounts for. The intuition of it is that the capability of a BDI

agent is essentially the amount of different types of event-goals

it can handle. Therefore, we define the degree of functionality
to formalise this intuition as follows:

Definition 9. A degree of the functionality is a function Δ :
2P × T × T → N defined as follows:

F(Π) = |{eP · P ∈ Π}|
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where Π ∈ 2P and eP is an event-goal of plan P .

Finally, we introduce four ordering relations corresponding

to the three summaries we established above (i.e. execution
frequency, success rate, and functionality), and one extra

ordering relation based on relevancy and replaceability (recall

that relevancy quantifies how many relevant plans to respond

to the event-goal of a plan, while replaceability counts the

number of sets of plans which are available to replace such a

plan). The orderings are given as follows:

Definition 10. A set of binary relations � over 2P w.r.t.
execution frequency Δ, success rate Φ, functionality F , and
relevancy Υ and replaceability Γ measure, is a 4-tuple

〈�activeness ,�success ,�functionality ,�robustness〉
where ∀Π,Π ′ ∈ 2P

• Π �activeness Π
′ iff Δ(Π, t1, tn) ≥ Δ(Π ′, t1, tn);

• Π �success Π
′ iff Φ(Π, t1, tn) ≥ Φ(Π ′, t1, tn);

• Π �functionality Π
′ iff F(Π) ≥ F(Π ′);

• Π �robustness Π
′ iff �P ∈ Π s.t. P ∈ Π ′, ΥΠ(P ) ≤

ΥΠ′(P ), and ΓΠ(P ) ≤ ΓΠ′(P );

We have that Π � Π ′ if Π � Π ′ and Π ′ � Π while

Π � Π ′ if Π � Π ′ and Π � Π ′. For a plan library Π ,

if Π has a higher execution frequency than Π ′, denoted as

Π �activeness Π
′, then it is interpreted as that Π is believed to

be more active than Π ′. The second ordering Π �success Π
′

means that Π has a higher success rate than Π ′, and Π is

believed to be more successful than Π ′. The third ordering

Π �functionality Π
′ means that Π can respond to more types

of event-goals than Π ′ can. The fourth ordering Π �robustness

Π ′ shows that for every plan P ∈ Π , Π has both more relevant

and replaceable plans for P than Π ′ does.

Now that we have defined all relevant measures, we look

into how we can expand and contract a plan library in a

sensible and predictable way.

IV. PLAN LIBRARY EXPANSION

In this section, we propose some postulates for a plan

library expansion. The approach of postulates has amounted to

many seminal works in the community of belief revision and

contraction such as [19] and [20], and belief merging [21]. For

illustration and simplicity, we will first consider using a single

plan to represent inputs, and then extend to the general case

where we use any set of plans to represent general inputs.

A. Formal Expansion Framework

We start with the definition of an expansion operator ◦:
Given a plan library Π and a plan P , Π ◦ P denotes the

expansion of Π by P with ◦ if and only if it satisfies the

following postulates:

EO1 Π ◦ P is a plan library.

This postulate ensures that the expansion is still a plan library.

EO2 P ∈ Π ◦ P and Π ⊆ Π ◦ P .

This postulate states that the new plan is obtained after the

expansion and the result of plan library expansion Π◦P indeed

subsumes the knowledge of the previous plan library Π .

EO3 If P ∈ Π , then Π ◦ P = Π .

This postulate indicates that the plan library expansion Π ◦
P should only consider a new plan P which is initially not

included in Π .

EO4 (Π ◦P ) ◦P ′ = (Π ◦P ′) ◦P for any plan P and P ′.
This postulate indicates that the order of inputs (received)

should not influence the outcome of the expansion.

Proposition 1. If an operator ◦ satisfies EO1, EO2, and EO4,
we have Π ◦ {P, P ′} = (Π ◦ P ) ◦ P ′ = (Π ◦ P ′) ◦ P .

This proposition shows that the expansion of a set of plans

is equivalent to a sequence of expansions by a single plan.

Now we give the following representation theorem for these

postulates.

Theorem 1. Given an operator ◦, Π ◦ P satisfies EO1-E04
precisely when

Π ◦ P �functionality Π and Π ◦ P �robustness Π .

This theorem formally confirms that the expansion of a plan

library Π by P will never cause a decrease of functionality
or robustness (i.e. more event-goals can be responded to, and

more relevant or replaceable plans may be adopted).

Finally, in order to extend these postulates to the case that

new input is not restricted to only one plan, we simply need

to replace a single input plan P with a set of plans P .

V. PLAN LIBRARY CONTRACTION

In this section, we give a principled definition of a plan

library contraction operator. We then present a concrete instan-

tiation of such an operator in a Mars Rover scenario. We then

close this section by showing that this instantiation satisfies

the postulates of a contraction operator.

A. Formal Contraction Framework

We start with the definition of a contraction operator ∇:

Given a plan library Π , ∇(Π) denotes the contraction of Π
by ∇ iff it satisfies the following postulates:

CO1 ∇(Π) is a plan library.

This postulate ensures the result of contraction is a plan library.

CO2 ∇(Π) ⊆ Π .

This postulate states that the result of a contraction operator

is a subset of the original plan library.

CO3 Given a set of plans P , if P ⊆ Π \ ∇(Π) and P ⊆
Π ′ ⊆ Π , then P ⊆ Π ′ \ ∇(Π ′).

This relativity postulate states that if a set of plans P are

contractible in the plan library Π (i.e. P ⊆ Π \ ∇(Π)), then

they must be deemed as contractible in any subset Π ′ (i.e.

P ⊆ Π ′ \ ∇(Π ′)) which includes them (i.e. P ⊆ Π ′ ⊆ Π).

CO4 ∇(Π) � Π where �∈ {�activeness ,�success}.
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This postulate restricts the behaviour of the contraction by

saying that the contraction ∇(Π) should not witness the

decrease of both execution frequency and success rate of Π .

CO5 ∀P ∈ Π \ ∇(Π), then Γ∇(Π)(P ) > 0.

This postulate takes care of the fragility of the plan library

by ensuring that there are still plans left in ∇(Π) which can

replace deleted plan P .

With these postulates, we have the following results that char-

acterise contraction operators that satisfy some of postulates

CO1-CO5.

Proposition 2. If an operator ∇ satisfies CO1-CO3, then the
following holds:

(1) ∇(Π ′) ⊆ ∇(Π) if Π ′ ⊆ Π ordered set inclusion

(2) ∇(Π ∩Π ′) ⊆ ∇(Π) ∩∇(Π ′) intersection set inclusion

(3) ∇(Π \Π ′) ⊆ ∇(Π) \ ∇(Π ′) difference set inclusion

(4) ∇(Π) ∪∇(Π ′) ⊆ ∇(Π ∪Π ′) union set inclusion

Proof. The first condition shows that the contraction preserves

the set inclusion order. If (Π \ ∇(Π)) ∩ Π ′ = ∅, then we

have Π ′ ⊆ ∇(Π). Given CO2 (i.e. ∇(Π ′) ⊆ Π ′), we have

∇(Π ′) ⊆ ∇(Π). If (Π \ ∇(Π)) ∩ Π ′ = P �= ∅, we have

Π ′ \ P ⊆ ∇(Π). Given CO3, we have P ⊆ Π ′ \ ∇(Π ′),
which means ∇(Π ′) ⊆ Π ′ \ P . Hence we have ∇(Π ′) ⊆
∇(Π). In the second condition, it shows that the contraction

on intersection of Π and Π ′ are a subset of the intersection of

the contraction results of∇(Π) and∇(Π ′). Notice Π∩Π ′ is a

subset of both Π and Π ′. Therefore, ∇(Π∩Π ′) ⊆ ∇(Π) and

∇(Π ∩Π ′) ⊆ ∇(Π ′) according to the first condition. Hence

∇(Π ∩Π ′) ⊆ ∇(Π)∩∇(Π ′). Similar arguments can be give

to the third and fourth condition by noticing Π \Π ′ ⊆ Π (i.e.

difference set inclusion) and Π ′ ⊆ Π in third condition, and

Π ⊆ Π ∪Π ′ (i.e. union set inclusion) and Π ′ ⊆ Π ∪Π ′ in

fourth condition.

B. Instantiation of Plan Library Contraction

In this section, a concrete multi-criteria argumentation-

based decision making is proposed to instantiate the abstract

contraction operator presented in Section V-A. We stress

though that the purpose of this instantiation is not to signify

its supremacy over other potential instantiations, but rather to

verify the existence and feasibility of our contraction opera-

tor. Also, the benchmark comparison of different instantiated

contraction operators is beyond the scope of this work.

The multi-criteria argumentation-based decision making is

a general-purpose decision framework which combines the

multi-criteria decision [22] with knowledge based qualitative

argumentation theory [23]. Argumentation serves to support

or attack whether a particular candidate is better than another

based on knowledge processed by an agent. The framework

employed in this work is formally stated in [24] and is con-

ceptually composed by three components, namely 〈X,K,R〉.
The first component X is the set of all possible candidates

(e.g. a set of plans) presented to the decision maker. The

second component is epistemic knowledge K, denoted as a

5-tuple 〈C, >C , λ,
,ACC 〉. It allows the agent to reason and

compare candidates among each other and decide which is/are

best candidate/s to be chosen. A set of non-cyclic (i.e. linear)

criteria C (e.g. success rate) is used to compare the elements

in X . The strict order of the element of C, denoted as >C ,

is given such that (Ci, Cj) ∈ C means that the criteria Ci is

preferred than Cj . In order to quantify the linear preference,

each Ci ∈ C has a subinterval that states the preference

among all criteria (e.g. C1 = execution frequency ∼ [0, 0.25]).
A set of clauses (ζ, α) is computed where ζ in the form

of q ← p1 ∧ · · · ∧ pk (k ≥ 0) says the conclusion q is

supported by p1 ∧ · · · ∧ pk, where q, p1, · · · , pk are literals,

and α ∈ [0, 1] which express a low bound for the necessity

degree of ζ. A set of uncertain clauses (i.e. α ∈ (0, 1)) is

denoted as λ while the set of certain clauses (i.e. α = 1)

denoted as 
. Uncertain clauses with the same conclusion will

be combined to form arguments. A user-specified aggregation

function ACC aggregates necessity degrees of arguments

which support a same conclusion q to build accrued structures.

Finally, decision rulesR will be used to select final candidates,

denoted as Ω(〈X,K,R〉), based on those accrued structures.

There are two decision rules2:

DR1 : {W} X⇐ {ws(W,Y)}, not{ws(Z, W)}.
A candidate W ∈ X will be chosen if W is worse (ws) than

another candidate Y and no Z exists which is worse than W.

DR2 : {W, Y} X⇐ {sm(W,Y)}, not{ws(Z, W)}.
Both W and Y ∈ X , deemed as equivalently bad i.e. same

(sm), will be chosen if there is no Z which is worse than W
and Y.

Following the methodology of the formalism in [24], we

consider a BDI agent which has a set of plan P and a set of

criteria C = {C1, C2, C3, C4} where C1 = Δ(P, t0, tcurrent)
is the overall execution frequency from initial time point

t0 to current time point tcurrent (i.e. the moment the plan

contraction starts), C2 = Δ(P, t′, tcurrent) the latest execution
frequency of P from a chosen recent time point t′ to tcurrent,
C3 the overall success rate, and C4 the the latest success rate.

In this work, we assume that the agent prioritises the

success rate criteria over execution frequency criteria and

prefer the latest information. Therefore, the criteria order

>C= {(C4, C3), (C2, C1), (C4, C2), (C3, C1)}. Since plans

that are without any replaceable plans cannot be deleted and

the formalism in [24] is not concerned with how the possible

candidates are obtained to present to the decision-maker, we

will employ postulate CO5 to filter these plans out. Therefore,

we define a specific contraction operator, denoted as ∇abm,

and propose a generic algorithm which implements ∇abm as

shown in Algorithm 1:

Definition 11. Let P be a set of plans. We define a contraction
operator ∇abm = Ω(〈X,K,R〉) where Ω(〈X,K,R〉) is the
selected candidates of decision problem 〈X,K,R〉 defined
previously, and X = {P ∈ P | ΓP(P ) > 0, C4(P ) < τ}

2We modify the rules to choose the worse (ws) plans compared to the
original work on finding the better ones.

418



where τ represents the success rate tolerance threshold and
C4(P ) the value of criteria C4 (i.e. latest success rate) of P .

The set of all possible candidates X will not include any

plans which do not have replaceable plans (i.e. ΓP(P ) > 0)

and only have plans with success rates lower than τ for poten-

tial removal (i.e. C4(P ) < τ ) shown in step 2 of Algorithm 1.

In the following section, all the concepts involved in the multi-

criteria argumentation based decision making in [24] will be

exemplified in a Mars Rover example to demonstrate how it

can effectively assist the selection of plans.

Algorithm 1 Computation for Contraction Operator ∇abm

1: function ∇abm(〈X, C, >C , R〉)
2: X = {P ∈ P | ΓP(P ) > 0, C4(P ) < τ} � filtering

3: C = {C1, C2, C3, C4} defined previously

4: >C= {(C4, C3), (C2, C1), (C4, C2), (C3, C1)}
5: Compute uncertain and certain clauses (λ,
)
6: Build arguments (defined in [24])

7: Apply rules R to select the acceptable candidates

8: return solution of selection

C. Planetary Vehicle Example

One of the missions of Mars Rover is to use scientific

instruments mounted to the robotic arm of the Rover to

investigate and analyse Martian terrain. This requires the

Rover to drive up to a designated target (i.e. terrain navigation

plan), position themselves to reach the target (i.e. Rover

positioning plan), and deploy the arm onto the target to

perform the investigation (i.e. arm deployment plan). After

remembering several routes from the navigation planner it took

to a designated crater wall, the Rover has plans P1, P2, and

P3 to navigate to it again if needed. Plan P4 and P5 are Rover

positioning and arm deployment plan, respectively. Consider

the set of plans Π = {P1, P2, P3, P4, P5} where replaceability
ΓΠ(P1) = ΓΠ(P2) = ΓΠ(P3) = |{P1, P1, P3}| − 1 =
2, ΓΠ(P4) = ΓΠ(P5) = |{P4}| − 1 = |{P5}| − 1 = 0,

and C = {C1, C2, C3, C4} where C1 is the overall execution
frequency (oef), C2 the latest execution frequency (lef), C3

overall success rate (osf), and C4 latest success rate (lsr). We

set the lower bound tolerant success rate threshold τ = 0.85.

Table I shows the possible candidates (P4 and P5 are filtered

out due to no replaceable plans available) and their respective

values for each criterion (in C1, C2, C3, and C4) and their

respective values normalised to interval [0, 1] (in C ′1, C ′2,

C ′3, and C ′4). Likewise, following the approach from [24], a

set of uncertain and certain clauses 〈λ,
〉 can be computed

(explained shortly after) and shown as follow:

Candidates C1 C2 C3 C4 C′
1 C′

2 C′
3 C′

4

P1 80 70 0.8 0.5 1 1 1 0.63
P2 20 5 0.6 0.8 0.25 0.07 0.75 1
P3 70 10 0.7 0.75 0.88 0.14 0.88 0.94

TABLE I: Criterion Values and Normalised Criterion Values

λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(oef(P2, P1), 0.19) (ws(W,Y) ← oef(W,Y ), 0.24)
(oef(P2, P3), 0.16) (¬ws(W,Y) ← oef(W,Y ), 0.24)
(oef(P3, P1), 0.03) (ws(W,Y) ← lef(W,Y ), 0.49)
(lef(P2, P1), 0.48) (¬ws(W,Y) ← lef(W,Y ), 0.49)
(lef(P2, P3), 0.27) (ws(W,Y) ← osf(W,Y ), 0.74)
(lef(P3, P1), 0.47) (¬ws(W,Y) ← osf(W,Y ), 0.74)
(osr(P2, P1), 0.56) (ws(W,Y) ← lsr(W,Y ), 0.99)
(osr(P3, P1), 0.53) (¬ws(W,Y) ← lsr(W,Y ), 0.99)

(osr(P2, P3), 0.53) (lsr(P1, P2), 0.84)
(lsr(P1, P3), 0.83) (lsr(P3, P2), 0.77)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

� = {(¬ws(W,Y )← sm(W,Y ), 1) (¬ws(W,Y )← sm(Y,W ), 1)}
The necessity degrees of the clauses belonging to (λ,
)

above were calculated as follows. Step 1: Normalise the

criteria values (see Ci) to interval [0, 1] for all of the criteria

(see C ′i). Step 2: Compare the candidates among each other

regarding the normalised criteria. The candidate which appears

as first argument has a worse criteria value than the one that

appears as second argument. The necessity degree of the clause

is calculated as the absolute value of the remainder of the

normalised criteria values. Step 3: Divide the necessity degree

obtained in previous step by the number of criteria provided

to the decision maker, i.e. by 4 in this case. Step 4: Assign the

subinterval to each criteria according to >C , i.e. C1 = oef ∼
[0, 0.25], C2 = lef ∼ [0.25, 0.5], C3 = osr ∼ [0.5, 0.75],
and C4 = lsr ∼ [0.75, 1]. Step 5: Map the necessity degrees

obtained in the previous step to the subinterval assigned to

the criteria in the clause. Step 6: For each clause (ζ, α)
such that ζ is a rule of either ws(W,Y ) ← Ci(W,Y ) or

¬ws(W,Y ) ← Ci(W,Y ), we set α to be the upper bound

value of the subinterval assigned to Ci where i ∈ {1, 2, 3, 4}.
The arguments of the form A = 〈u, h, α〉 is presented

in Figure 1 and is built from the uncertain clause program in

which u is a set of uncertain clauses from λ, h the conclusion it

supports (e.g. ws(W,Y)), and α its necessity degree. Finally, we

aggregate the arguments which support the same conclusion h
into accrued structures. For example, A1, A7, and A13 support

the same conclusion ws(P2, P1) to build the accrued structure

[Ψ1,ws(P2, P1), 0.82] in which Ψ1 = A1 ∪ A7 ∪ A13. To

calculate the necessity values for accrued structures, it will

use the ACC function defined below, with K = 0.1:

ACC(α1, · · · , αn) = [1−∏
(1− αi)] + Kmax(α1, · · · , αn)

∏
(1− αi)

As it can be observed, 12 aggregated arguments shown

in Figure 1 can be built to support the reasons by which a

candidate should be deemed worse than another one. Those

aggregated arguments warranted (shown in bold) because of

their greater necessity values than their negated counterparts

will be used to compute the final chosen candidate(s) with

decision rules R. In this particular case, only decision rule

DR1 can be applied. For candidate P1, precondition of DR1
can be warranted and there is no warranted accrued structure

supporting a conclusion of the kind ws(Z,P1) to warrant

the restriction of rule DR1, hence P1 becomes the selected

candidate for deletion.

Choosing plan P1 is quite evident for the so-called human

common sense reasoning since it has the worst latest success
rate (i.e. 0.5) which is most important preference criterion,

despite having a best overall success rate. The worst latest
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success rate may imply that P1 is no longer suitable for

the current Martian surface navigation task, thus ready to be

dropped by the Rover.

A1 = 〈{(ws(P2, P1) ← oef(P2, P1), 0.24), (oef(P2, P1), 0.19)}, ws(P2, P1), 0.19〉

A2 = 〈{(¬ws(P1, P2) ← oef(P1, P2), 0.24), (oef(P1, P2), 0.19)},¬ws(P1, P2), 0.19〉

A3 = 〈{(ws(P2, P3) ← oef(P2, P3), 0.24), (oef(P2, P3), 0.19)}, ws(P2, P3), 0.16〉

A4 = 〈{(¬ws(P3, P2) ← oef(P3, P2), 0.24), (oef(P3, P2), 0.19)},¬ws(P3, P2), 0.16〉

A5 = 〈{(ws(P3, P1) ← oef(P3, P1), 0.24), (oef(P3, P1), 0.03)}, ws(P3, P1), 0.03〉

A6 = 〈{(¬ws(P1, P3) ← oef(P1, P3), 0.24), (oef(P1, P3), 0.03)},¬ws(P1, P3), 0.03〉

A7 = 〈{(ws(P2, P1) ← lef(P2, P1), 0.49), (lef(P2, P1), 0.48)}, ws(P2, P1), 0.48〉

A8 = 〈{(¬ws(P1, P2) ← lef(P1, P2), 0.49), (lef(P1, P2), 0.48)},¬ws(P1, P2), 0.48〉

A9 = 〈{(ws(P2, P3) ← lef(P2, P3), 0.49), (lef(P2, P3), 0.27)}, ws(P2, P3), 0.27〉

A10 = 〈{(¬ws(P3, P2) ← lef(P3, P2), 0.49), (lef(P3, P2), 0.27)},¬ws(P3, P2), 0.27〉

A11 = 〈{(ws(P3, P1) ← lef(P3, P1), 0.49), (lef(P3, P1), 0.47)}, ws(P3, P1), 0.47〉

A12 = 〈{(¬ws(P1, P3) ← lef(P1, P3), 0.49), (lef(P1, P3), 0.47)},¬ws(P1, P3), 0.47〉

A13 = 〈{(ws(P2, P1) ← osr(P2, P1), 0.74), (osr(P2, P1), 0.56)}, ws(P2, P1), 0.56〉

A14 = 〈{(¬ws(P1, P2) ← osr(P1, P2), 0.74), (osr(P1, P2), 0.56)},¬ws(P1, P2), 0.56〉

A15 = 〈{(ws(P3, P1) ← osr(P3, P1), 0.74), (osr(P3, P1), 0.53)}, ws(P3, P1), 0.53〉

A16 = 〈{(¬ws(P1, P3) ← osr(P1, P3), 0.74), (osr(P1, P3), 0.53)},¬ws(P1, P3), 0.53〉

A17 = 〈{(ws(P2, P3) ← osr(P2, P3), 0.74), (osr(P2, P3), 0.53)}, ws(P2, P3), 0.53〉

A18 = 〈{(¬ws(P3, P2) ← osr(P3, P2), 0.74), (osr(P3, P2), 0.53)},¬ws(P3, P2), 0.53〉

A19 = 〈{(ws(P1, P2) ← lsr(P1, P2), 0.99), (lsr(P1, P2), 0.84)}, ws(P1, P2), 0.84〉

A20 = 〈{(¬ws(P2, P1) ← lsr(P1, P2), 0.99), (osr(P1, P2), 0.84)},¬ws(P1, P2), 0.84〉

A21 = 〈{(ws(P1, P3) ← lsr(P1, P3), 0.99), (lsr(P1, P3), 0.83)}, ws(P1, P3), 0.83〉

A22 = 〈{(¬ws(P3, P1) ← lsr(P3, P1), 0.99), (lsr(P3, P1), 0.83)},¬ws(P3, P1), 0.83〉

A23 = 〈{(ws(P3, P2) ← lsr(P3, P2), 0.99), (lsr(P3, P2), 0.77)}, ws(P3, P2), 0.77〉

A24 = 〈{(¬ws(P2, P3) ← lsr(P2, P3), 0.99), (lsr(P2, P3), 0.77)},¬ws(P2, P3), 0.77〉

[Ψ1, ws(P2, P1), 0.82], [Ψ′
1, ¬ws(P2, P1), 0.85], Ψ1 = A1 ∪ A7 ∪ A13 , Ψ′1 = A20

[Ψ2,¬ws(P1, P2), 0.82], [Ψ′
2, ws(P1, P2), 0.85], Ψ2 = A2 ∪ A8 ∪ A14 , Ψ′2 = A19

[Ψ3, ws(P2, P3), 0.73], [Ψ′
3, ¬ws(P2, P3), 0.79], Ψ3 = A3 ∪ A9 ∪ A17 , Ψ′3 = A24

[Ψ4,¬ws(P3, P2), 0.73], [Ψ′
4, ws(P3, P2), 0.79], Ψ4 = A4 ∪ A10 ∪ A18 , Ψ′4 = A23

[Ψ5, ws(P3, P1), 0.77], [Ψ′
5, ¬ws(P3, P1), 0.84], Ψ5 = A5 ∪ A11 ∪ A15 , Ψ′5 = A22

[Ψ6,¬ws(P1, P3), 0, 77], [Ψ′
6, ws(P1, P3), 0.84], Ψ6 = A6 ∪ A12 ∪ A16 , Ψ′6 = A21

Fig. 1: Arguments and accrued structures

D. Theorem

Theorem 2. ∇abm = Ω(〈X,K,R〉) is indeed a contraction
operator ∇ satisfying CO1-CO5

Sketch. Postulates CO1 (i.e. ∇abm(Π) is a plan library) and

CO2 (i.e. ∇abm(Π) ⊆ Π) hold as plans are simply selected

and removed from the original plan library Π .

Postulate CO3 (i.e. relativity of contraction) holds for ∇abm

due to two computation steps of uncertain clauses λ. The

normalisation of criteria values (in Step 1) and the absolute

value of the remainder of the normalised criteria values

(in Step 2) imply that a plan is deemed worse than the others

is in a relative sense in a given set of plans.

Postulate CO4 says that the contraction should not witness

the decrease of both activeness and success rate of the plan

library. It holds for ∇abm because the selected plans to be

removed are those which are deemed worse either in success
rate criterion or both success rate and execution frequency
criteria than other plans. Therefore, at least success rate of all

plans will be increased after contraction. Hence CO4 holds.

Postulate CO5 (i.e. the protection of fragility of the plan

library) holds for ∇abm because we exclude plans which do

not have any replaceable plans beforehand show in step 2

in Algorithm 1. Therefore, there are still plans which can

replace deleted plans after the contraction. �

VI. RELATED WORK

Many works have tried to overcome the drawbacks associ-

ated with pre-defined plan libraries in BDI implementations.

The first branch of BDI research tackles the inadequacy of

a fixed plan library. A large number of works integrated

automated planning techniques into BDI agents to generate

plans at runtime, as surveyed by Meneguzzi and De Silva [9].

Only a few works start challenging the static nature of plan

library and pursue towards augmenting the range of behaviours

by expanding the set of BDI plans such as [15]. We are not

aware of any work which attempts to contract the set of plans

as we do here in this work.

Another branch of BDI research accepts the fixedness of

plan library and works on the refinements of the BDI agent

reasoning. For example, the work of [4] accommodates the

hierarchical planning as an advanced plan selection engine to

avoid potential troublesome execution sequences by looking

ahead rather than simply selecting one applicable pre-defined

plan. Another noticeable work [25] proposed a plan selection

strategy that chooses a set of plans that fulfills the maximum

number of goals while maintaining context consistency and

resource-tolerance among the chosen plans. The argumentation

based decision making framework also seems suitable to refine

the deliberation reasoning of beliefs and desires of BDI agents

in works of [26] and [27].

The summary information based agent reasoning in BDI has

also yielded many promising results for the agent reasoning.

The work of [14], [28], [29] presented algorithms for deriving

summary information from the pre-defined plan library in a

multi-agent system. That derived knowledge is then used to

synthesize “abstract plans” or coordinate the activities of the

agents at run time. Another similar summary work [30] focuses

on the single agent to exploit positive interactions between

goals and to avoid negative interactions. Furthermore, the work

of [18] extends both works on summarisation discussed above

with an account of non-deterministic actions, and with support

for specifying actions and goals within a single plan that can

execute concurrently.

The measure techniques in BDI agent systems have also

been intensively studied. The work of [31] measures the cost of

a plan while [17] measures the overage and overlap of a plan.

Both of them seek to use these measures to find either cheapest

or most likely-to-be successful plans and propose them to

the agent. The measure approach is also well appreciated in

the knowledgebase community. For instance, [32] provides

a comprehensive review of the measures of information in

developing intelligent systems that can tolerate inconsistencies

when reasoning with real-world knowledge.
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VII. CONCLUSION

In this paper, we described measures that characterise the

performance and structure of plans, and provided rationales to

guide the process of new plan adoption (i.e. plan expansion)

and unsuitable plan deletion (i.e. plan contraction). These

measures are based on useful concepts in BDI, such as how

plans relate to each other and how the agent performs when

dealing with specific event-goals. The merit of this paper is

that we are one of the first works which formally define an

evolving capacity of the BDI agents through changes to the

set of existing BDI plans. Furthermore, the measure strategies

and rationales we provide in this work are generic and do not

require additional information from the BDI agent developer

or the domain, beyond what is required in the typical BDI

agent development. However, we recognise that since the plan

library is assumed to evolve at real-time, it poses the challenge

of an online calculation mechanism which is not yet given in

this work. We also acknowledge that we have not yet imple-

mented the reasoning described, based on these measures and

postulates, and so do not yet have experimental results of their

optimal values, which we believe to be application-specific.

For future work, we plan to develop complete algorithms to

use in BDI implementations that allow to compute the relevant

measures in an online fashion, i.e. calculating measures based

on previous measure results, and newly adopted and deleted

plans instead of redoing the whole calculation every time.
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