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Abstract. CAN-verify is an automated tool that aids the development,
verification, and analysis of BDI agents written in the Conceptual Agent
Notation (Can) language. It does not require users to be familiar with
verification techniques. CAN-verify supports syntactic error checking,
interpretation of programs (running agents), and exhaustive exploration
of all possible executions (agent verification and analysis) to check against
both generic agent requirements, such as if a task can be achieved success-
fully, and user-defined requirements, such as whether a certain belief even-
tually holds. Simple examples of Unmanned Aerial Vehicles (UAV) and
autonomous patrol robots illustrate the tool in action.

1 Introduction

The BDI architecture, where agents are modelled based on their beliefs, desires,
and intentions, is a practical approach to developing complex and autonomous
systems. BDI agents make decisions based on their beliefs, which reflect their
understanding of the world, their desires, which represent their goals, and their
intentions, which are the plans they’ve committed to achieve those goals. The
design of these agents is challenging because of the mixed nature of the goal:
declarative (a description of the state sought) and procedural (a set of instruc-
tions to perform), failure handling, inherently interleaved concurrent behaviours,
and ultimately the safety of these agents’ employment.

There is a software collection to develop BDI agents including JACK [33],
Jason [10], and Jadex [28]. These platforms focus on the simulations of BDI
agents primarily programmed in variants of AgentSpeak [29], one of the most
well-known BDI languages. Simulations cannot, by their nature, analyse all pos-
sible agent behaviours. As such, formal verification techniques [20] have been
used to exhaustively assess whether agents will indeed behave as required. For
example, the Model Checking Agent Programming Languages (MCAPL) frame-
work [16] offers model checking for Gwendolen [15] programs (another variant
of AgentSpeak).
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To widen access to formal methods, we present an automated tool, CAN-
verify, for BDI programmers to verify agents in the Conceptual Agent Nota-
tion (Can) language. As a superset of AgentSpeak, Can includes advanced
behaviours e.g. declarative goals, concurrency, and failure recovery. In a nut-
shell, CAN-verify takes as input Can programs and supports the following
features:

– static checking for a wide range of BDI program syntactic issues;
– support for BDI program interpretation;
– exhaustive exploration of BDI program executions;
– verification, through model checking, of agents against a set of built-in generic

agent requirements and (optional) user-defined agent requirements that can
be expressed in natural language;

– verification of BDI agents parameterised by their initial belief base to support
analysis of agent behaviours under different initial environments.

This is the first tool to support reasoning about Can programs without requiring
users to have specialised knowledge of verification techniques and formal logics.
CAN-verify, and all examples shown in this work, are openly available [35].

Related Work. There is wide interest in applying formal verification to
autonomous agents [7,12,25], but adoption has been limited mainly due to the
complexities of formal verification tools [1]. This is also an issue in the broader
Formal Method community for applicable formal methods [19]. Our tool allows
agent programmers to benefit from verification without specialist knowledge.

Previous work on reasoning about BDI agents using automated techniques
includes the MCAPL framework. MCAPL implements a BDI language in Java
allowing it to be verified with the Java PathFinder [11] program model checker.
While verifying an implementation tells you how the specific system will oper-
ate, it may not give insight into how the language semantics were meant to
operate, especially if the implementation does not fully correspond. For example,
Gwendolen (supported by MCAPL) only selects the first applicable plan, while
language semantics usually allow any applicable plan to be chosen. Bordini et
al. [9] translates a simplified AgentSpeak language into Promela [23] and verifies
agents using the Spin model-checker [22]. Similarly, term-rewriting, specifically
in Maude [14], has also been used to encode BDI agent languages, allowing verifi-
cation of temporal properties with the Maude LTL model checker [17]. Recently,
Jensen [24] applied the Isabelle/HOL proof assistant [27] to BDI programs. How-
ever, no tool is fully automated to relieve users from the error-prone translation
and complex verification stages, whereas we streamline the BDI agent design,
interpretation, and verification process, alleviating these burdens from users.

2 CAN—Overview

The Conceptual Agent Notation (Can) [31] language formalises a classical BDI
agent consisting of a belief base B and a plan library Π. The belief base B is a set
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Listing 1.1. Can agent for conference trip arrangement.
1 at_home // Initial belief bases
2 travel // External events
3 // Plan library
4 travel: own_car & driving_distance <- start_car; driving.
5 // Action descriptions
6 start_car: car_functional <- <{engine_off}, {engine_on}>
7 driving: engine_on <- <{not_at_venue}, {at_venue}>

of formulae encoding the current beliefs and has belief operators for entailment
(i.e. B |= ϕ), and belief atom addition (resp. deletion) B ∪ {b} (resp. B \ {b}).
In this case, we assume propositional logic. A plan library Π is a collection of
plans of the form e : ϕ ← P with e the triggering event, ϕ the context condition,
and P the plan-body. The triggering event e specifies why the plan is triggered,
while the context condition ϕ determines if the plan-body P is able to handle
the event. Events can either be external (i.e. from the environment) or internal
(i.e. sub-goals that the agent itself tries to accomplish). The language used in
the plan-body for agent programmers is act | e | P1;P2 | P1 ‖ P2 | goal(ϕs, e, ϕf )
where act is an action, e is a sub-event (i.e. internal event), composite programs
P1;P2 (resp. P1 ‖ P2) for sequence (resp. concurrency), and goal(ϕs, e, ϕf ) a
declarative goal program. Actions act take the form act : ϕ ← 〈φ−, φ+〉, where
ϕ is the pre-condition, and φ− and φ+ are the deletion and addition sets of
belief atoms, i.e. a belief base B is revised to be (B \ φ−) ∪ φ+ when the action
executes. Composite programs P1;P2 is for sequenced execution and P1 ‖ P2

for interleaved concurrency. A declarative goal program goal(ϕs, e, ϕf ) expresses
that the declarative goal ϕs should be achieved through an event e, failing if
ϕf becomes true, and retrying as long as neither ϕs nor ϕf is true. The full
semantics of Can can be found in [30,34].

The example in Listing 1.1 describes a fragment of agent arranging a confer-
ence trip [3]. An agent desires to travel, i.e. an external event travel (line 2)
and believes it is at home initially, i.e. a belief at_home (line 1). In this frag-
ment, the only plan (line 4) expresses that if the agent believes it owns a car (i.e.
own_car holds) and the venue is in driving distance (i.e. driving_distance),
it will start the car (start_car) and drive (driving) to the venue. Actions
change beliefs, for example, start_car (line 6) says that if the car is functional
(car_functional) then, after executing the action, the agent should believe the
engine is on (engine_on) and remove the belief the engine is off (engine_off).

3 CAN-VERIFY Components and Features

Our tool is based on an executable semantics of Can [3] enabled through an
encoding into Milner’s Bigraphs [26], a computational model based on graph-
rewriting. The dataflow of the toolchain is in Fig. 1. Step 1 translates input Can
programs into bigraphs expressed in the BigraphER [32] language. During the
translation, static checks are performed and errors/warnings reported to users.
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Listing 1.2. Built-in (lines 1-4) and user-defined (lines 5 and 6) agent requirements.
Belief-lists have ∧ semantics i.e. there is a state where all beliefs hold at the same time.
1 A [ F (" no_failure" & X (" empty_intention ")) ];
2 E [ F (" no_failure" & X (" empty_intention ")) ];
3 A [ F (" failure" & X (" empty_intention ")) ];
4 E [ F (" failure" & X (" empty_intention ")) ];
5 A [ F (<belief -list >) ];
6 E [ F (<belief -list >) ];

To verify an agent, the agent requirements in both built-in and user-defined
requirements will be compiled as bigraph patterns for state predicate labelling
( 2 ) if the pattern matches the current state then the predicate is true. Step 3
combines bigraph models representing agent programs and Can semantics [3],
and asks BigraphER to explore all possible executions. The output of BigraphER
(an explicit transition system with state predicate labels), and built-in and user-
defined temporal logic formulae (complied from 4 ) are then verified by PRISM1

( 5 ). Next, we will go through the features of our tool in detail one by one.

CAN Program CAN to Bigraph
Translator

BigraphER

Agent
Requirements

CAN Semantics
(Bigraph rules) PRISM

Static Analysis

Model Checking
Analysis

CAN to Bigraph
TranslatorTT

BigraphER

CAN Semantics
(Bigraph rules) PRISM

CAN-verify
1

2

3

5

4

Fig. 1. Toolchain overview: 1 agent program compilation to bigraphs, 2 predicate
labelling in bigraph model, 3 (exhaustive) execution of programs, 4 built-in and
user-defined belief-based specification formalisation in CTL, 5 formal verification.

Static Analysis of BDI Programs. Our tool provides static checks of agent
programs including reporting syntax errors, type errors e.g. when a plan is used
where a belief is expected, and undefined errors e.g. when an actions is used but
does not exist, or no plan is able to handle a defined event. We also support design
aids as warnings, for example, reporting if (customisable) limits are violated such
as the mininum/maximum number of plans for an event.

CAN Interpreter. As the bigraph model includes the semantics for the Can
language, given an initial state we can execute any Can programs. Note: there
is no support to actually execute actions, but only to record their outcomes.
1 Any model checker supporting explicit model import would work. PRISM is chosen

as BigraphER natively supports PRISM format, and as ongoing work we aim to
allow probabilistic extensions and reasoning on Can programs [2,5].
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Listing 1.3. Can agent for concurrent sensing in UAVs
1 ram_free , storage_free // Initial belief bases
2 sensing // External events
3 //Plan library
4 sensing: true <- dust || photo.
5 dust: ram_free & storage_free <- collect_dust; analyse; send_back.
6 photo: ram_free & storage_free <- focus_camera; save_shots; zip_shots.
7 // Actions description
8 collect_dust: ram_free <- <{ram_free}, {}>
9 analyse: true <- <{}, {}>

10 send_back: storage_free <- <{}, {ram_free ,storage_free}>
11 focus_camera: true <- <{}, {}>
12 save_shots: storage_free <- <{storage_free}, {}>
13 zip_shots: ram_free <- <{}, {ram_free , storage_free}>

Model Checking of BDI Programs. Model checking is enabled by taking the
executable model of the agent program and constructing a labelled transition sys-
tem of the program’s possible executions that allow checking agent requirements
against this model. Built-in agent requirements for generic properties include
determining if for some/all executions an event finishes with failure or success
(these failure or success state are labelled using bigraph predicates [8] automat-
ically). These requirements are translated into branching time temporal logic
formulae e.g. Computation Tree logic (CTL) [13] for the PRISM model checker.
Example requirements are in Listing 1.2. The first 4 requirements are built-
in properties that will always be checked by default. The last 2 properties are
user-defined requirements, checking on e.g. if some desired/avoided beliefs would
hold true in all possible agent behaviours. To avoid requiring users to formalise
these properties in CTL syntax, properties are instead expressed in natural lan-
guage. For example, the input of “In all possible executions, eventually the belief
at_venue holds”2 equals to the CTL formula A [ F ("at_venue") ], check-
ing eventually the agent of Listing 1.1 arrives at the venue. This translation is
performed by the tool as well. Although current support from natural language
to formal properties is limited, and an area of future work, we focus on this
style of property specification as this is what non-expert users often encounter
in practice. Finally, to verify BDI agents starting from different environmental
conditions (i.e. different initial belief bases), our tool supports verification from
parameterised initial belief bases defined in the Can file. This is useful as the
users do not have to run the agent with each initial belief manually, and, impor-
tantly, it facilitates a quick comparison of the results from different initial beliefs.
Each initial belief set is numbered and the tool automatically runs multiple times
to output a result for each initial belief base. For example, we can add another
initial belief base e.g. at_shop in Listing 1.1 to analyse agent behaviours with
the initial location at a shop.

4 Examples

We give two simple examples to show how our tool improves agent designs and
guarantees correct agent behaviours. The aim is to relieve non-expert users from
2 Parser requires exact natural language wording with user-defined strings as beliefs.



CAN-Verify: A Verification Tool for BDI Agents 369

Listing 1.4. Can agent for two-storey building patrol robot.
1 // Initial belief bases
2 at_F1 , F1_dirty , F1_uninspected , F2_clean , F2_inspected
3 patrol // External events
4 // Plan library
5 patrol: true <- goal(F1_inspected & F2_inspected , check , false).
6 check: at_F1 <- goal(F1_clean , vacuum , false); goal(F1_inspected , inspect

, false); go_to_F2.
7 check: at_F2 <- goal(F2_clean , vacuum , false); goal(F2_inspected , inspect

, false); go_to_F1.
8 inspect: at_F1 & F1_uninspected <- inspect_F1.
9 inspect: at_F2 & F2_uninspected <- inspect_F2.

10 vacuum: at_F1 & F1_dirty <- clean_F1.
11 vacuum: at_F2 & F2_dirty <- clean_F2.
12 // Actions description
13 inspect_F1: at_F1 & F1_uninspected <- <{F1_uninspected}, {F1_inspected}>
14 inspect_F2: at_F2 & F2_uninspected <- <{F2_uninspected}, {F2_inspected}>
15 clean_F1: at_F1 & F1_dirty <- <{F1_dirty}, {F1_clean}>
16 clean_F2: at_F2 & F2_dirty <- <{F2_dirty}, {F2_clean}>
17 go_to_F2: at_F1 <- <{at_F1}, {at_F2}>
18 go_to_F1: at_F2 <- <{at_F2}, {at_F1}>

the underlying complex translation and verification process by supporting the
users’ workflow from agent design to agent behaviour analysis.

Concurrent Sensing. We consider a UAV that analyses dust particles and per-
forms aerial photo collection e.g. for analysis of post volcanic eruptions. An agent
design is in Listing 1.3 from [3]. The external event sensing (line 2) initiates
the sensing mission, and the relevant plan (line 4) has concurrent (interleaved)
tasks for dust monitoring (dust) and photo collection (photo). Onboard dust
sensors require high-speed RAM to collect and analyse the data (ram_free),
and, when the analysis is complete, results are written to storage (requiring
storage_free), and sent back to control. Similarly, to collect aerial photos the
UAV reserves and focuses the camera array (focus_camera), then camera shots
are compressed (zip_shots), and sent back (where only relevant beliefs are spec-
ified in the addition/deletion set of each action (lines 8–13). Static analysis does
not identify any issue, however, model checking shows sensing is not always
completed successfully. A possible explanation is that interleaved concurrency
introduces a race condition. To confirm, the agent programmer could replace
dust || photo (line 4) with dust; photo and re-run the tool. The new result
shows that the event is now always successful, giving feedback to the agent
designer to fix the design through explicit sequencing of actions.

Multi-storey Building Patrol Robot. We consider an autonomous patrol
robot that inspects/cleans all floors of a building. For simplicity, the design of
two-storey building is given in Listing 1.4. The initial belief base (line 2) gives
the location of the robot and the inspection and clean status of each floor. The
external event patrol (line 3) initiates the patrol mission. The plan (line 5)
addressing patrol has a true context (always applicable), and a declarative goal
whose success condition shows that the event check will be pursued until every
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floor is inspected. To address the event check, plans (lines 6–7) instruct the
robot to vacuum and inspect the floor if needed and move to the next higher
floor or get to the bottom if the top floor is reached. Plans (lines 8–11) are
for actually inspecting and vacuuming. There are no static analysis issues and
model checking shows that the event patrol is always completed with success,
confirming the robot can successfully achieve its task given the initial belief base.
To provide an even stronger guarantee of successful cleaning no matter where
the robot is initially located, we can parameterise the initial belief base by agent
location, e.g. adding another initial belief base in which the belief atom at_F1
changes to at_F2, and in each case, the agent exhibits the correct behaviours.

Fig. 2. Transition system construction time increases exponentially with floors.

To evaluate scalability, we increase the number of floors. The time to con-
struct the model is in Fig. 2. As expected, there is an exponential increase in
time from a couple of seconds to a couple of hours. As our tool is intended to be
used at design time we do not believe this to be an issue in practice.

5 Discussion and Conclusion

CAN-verify is motivated by the clear need for verification tools that are com-
prehensible and usable by non-experts. We streamlined the entire underlying
process of formal modelling/encoding from BDI agents to Bigraphs, model exe-
cution in BigraphER, and model-checking with PRISM. CAN-verify requires
only one mandatory input of BDI programs written in the Can languages and an
additional user-defined requirement input file that can be expressed in natural
language. The significance of this tool is to meet the growing demands for safe
autonomy through formal verification, e.g. for early error detection and design
improvement, without the costs of applying it e.g. formalisation effort.

Current research [4,6] employs the same Bigraph framework to show the
use of PRISM and Storm [21] for strategy synthesis and verification of BDI
agents and under dynamic environment. We anticipate a small software engi-
neering effort to extend CAN-verify to support both quantitative verification
and strategy synthesis. Additionally, the current property specifications mecha-
nism is limited, and we see the task of formalising complex and evolving agent
requirements for analysis as a challenging but necessary area. A good starting
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point may be to integrate with our tool an existing property elicitation interface
such as NASA’s Formal Requirements Elicitation Tool (FRET) [18].
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